| | | | | | AIRFLOW | | | | | | | | | | | |---------|----------|----------------------------|------|--------|-----------|--------|-----------------------|------------------------|------------------|---------|-------------------------|-------------------------|----------------|--------------------|-----------------------------| | MARK | LOCATION | AREA AND/OR
BLDG SERVED | TYPE | SUPPLY | MIN. O.A. | RETURN | SUPPLY
FAN
MARK | EXHAUST
FAN
MARK | PREFILTE
MARK | FILIER | PREHEAT
COIL
MARK | COOLING
COIL
MARK | REHEAT
COIL | HUMIDIFIER
MARK | WEIGH ⁻
(LBS) | | | | | | CFM | CFM | CFM | MAKK | MAKK | | MARK | MARK | MARK | | | | | 77-AC6 | SA-132 | RADIOLOGY
2ND FLOOR | _ | 22192 | 5530 | 16662 | SF-6 | RF-6 | PF-6 | AF-6A/B | PHC-6 | CC-6 | | SH-6 | 15667 | | 77-AC8 | ROOF | DENTAL CLINIC
3RD FLOOR | _ | 11063 | 2901 | 8162 | SF-8 | RF-8 | PF-8 | AF-8A/B | PHC-8 | CC-8 | | SH-8 | 9374 | | 77-AC10 | ROOF | IRM 3RD
FLOOR | _ | 9915 | 2349 | 7566 | SF-10 | RF-10 | PF-10 | AF-10 | PHC-10 | CC-10 | | SH-10 | 8374 | | | | | | | | | FA | N SCHEDU | ILE | | | | | | | |-------|----------|-----------------------------|---------|-----|------|---------|-------|--|----------|-------|----------------|---------|---------|----------------|------| | | | | | | | | | FAN | | | | | MOTOR E | LECTRICAL | | | MARK | LOCATION | SYSTEM
AND/OR
SERVICE | AIRFLOW | TSP | TYPE | WHEEL | CLASS | ARRANGEMENT,
ROTATION, AND
DISCHARGE | DIAMETER | DRIVE | FAN MAX
RPM | NOMINAL | - POWER | PHASE/
VOLT | RPM | | | | | CFM | IN | | | | | IN | | | BHP | HP | | | | SF-6 | SA-132 | 77-AC6 | 22192 | 8.3 | DWDI | AIRFOIL | 2 | 3, CW, THD | 28 | BELT | 1640 | 39.8 | 40 | 3/460 | 1800 | | RF-6 | SA-132 | 77-AC6 | 16662 | 1.2 | DWDI | AIRFOIL | 2 | 3, CW, THD | 32 | BELT | 656 | 4.9 | 7.5 | 3/460 | 1800 | | SF-8 | ROOF | 77-AC8 | 11063 | 7.4 | DWDI | AIRFOIL | 2 | 3, CW, THD | 20 | BELT | 2296 | 19.2 | 20 | 3/460 | 1800 | | RF-8 | ROOF | 77-AC8 | 8162 | 1.2 | DWDI | AIRFOIL | 2 | 3, CW, THD | 22 | BELT | 982 | 2.7 | 3 | 3/460 | 1800 | | SF-10 | ROOF | 77-AC10 | 9915 | 6.2 | DWDI | AIRFOIL | 2 | 3, CW, THD | 20 | BELT | 2086 | 14.4 | 15 | 3/460 | 1800 | | RF-10 | ROOF | 77-AC10 | 7566 | 1.3 | DWDI | AIRFOIL | 2 | 3, CW, THD | 22 | BELT | 976 | 2.6 | 3 | 3/460 | 1800 | | | | | | CHII | LLED ' | WATE | R COO | DLING | COIL S | CHEDU | LE | | | | | |-------|-------------------|---------|----------|-------|--------|------------|-------|-------|----------|----------|------|------|------------|------|--------| | | SYSTEM | AIDELOW | MAX FACE | ٨٥٥ | Ε⁄ | Δ Τ | L/ | ΑT | TOTAL | SENSIBLE | | CIRC | CULATING F | LUID | | | MARK | AND/OR
SERVICE | AIRFLOW | VELOCITY | APD | Db | Wb | Db | Wb | CAPACITY | CAPACITY | FLOW | EWT | LWT | WPD | ROWS | | | | CFM | FPM | IN WG | °F | °F | °F | °F | MBH | MBH | GPM | °F | °F | FT | .,,,,, | | CC-6 | 77-AC6 | 22192 | 452 | 0.8 | 80.2 | 66.4 | 51.7 | 51.6 | 980 | 697 | 122 | 45 | 61 | 20 | 8 | | CC-8 | 77-AC8 | 11063 | 532 | 1.2 | 80.2 | 66.4 | 51.7 | 51.6 | 489 | 347 | 61 | 45 | 61 | 19 | 8 | | CC-10 | 77-AC10 | L | 476 | 1.0 | 80.2 | 66.4 | 51.7 | 51.6 | 438 | 311 | 55 | 45 | 61 | 16 | 8 | | | | HOT ' | WATER | PREH | EAT C | COIL S | CHEDU | LE | | | | | |-------|-------------------|---------|----------|---------|--------|---------|-----------|------|-----|----------|-----|------| | | SYSTEM | AIRFLOW | MAX FACE | APD | TEMPER | RATURES | TOTAL MIN | | | HOT WATI | ΞR | | | MARK | AND/OR
SERVICE | AIRFLOW | VELOCITY | APU
 | EAT | LAT | CAPACITY | FLOW | EWT | LWT | WPD | ROWS | | | | CFM | FPM | IN WG | °F | °F | MBH | GPM | °F | °F | FT | | | PH-8 | 77-AC8 | 11063 | 651 | 0.2 | 25 | 55 | 360 | 16 | 180 | 135 | 7.5 | 1 | | PH-10 | 77-AC10 | 9915 | 583 | 0.1 | 25 | 55 | 322 | 12 | 180 | 126 | 4.5 | 1 | | | | STEA | M PREF | HEAT (| COIL S | SCHED | OULE (II | FB) | | | | |------|-------------------|---------|----------|--------|--------|---------|-----------|--------|------|------|------| | | SYSTEM | AIRFLOW | MAX FACE | APD | TEMPER | RATURES | TOTAL MIN | | STE | AM | | | MARK | AND/OR
SERVICE | AIRFLOW | VELOCITY | APU | EAT | LAT | CAPACITY | FLOW | PSIG | TRAP | ROWS | | | | CFM | FPM | IN WG | °F | °F | MBH | LBS/HR | | | | | PH-6 | 77-AC6 | 11096 | 414 | 0.1 | 25 | 53 | 335 | 352 | 25 | 704 | 1 | | | | | STI | EAM HUN | IIDIFER | SCHEDU | LE | | | |-------|---------|----------------------------------|---------|------------------|----------------|--------|-----|----------|--------| | | SYSTEM | | AIRFLOW | | | EA | LA | STE | EAM | | MARK | AND/OR | HUMIDIFIER
TYPE | AINFLOW | NO. OF MANIFOLDS | Db | %RH | %RH | PRESSURE | FLOW | | | SEVICE | | CFM | | °F | | | PSIG | LBS/HR | | SH-6 | 77-AC6 | DISPERSION
TUBE | 22192 | 1 | 65 | 26 | 50 | 25 | 337 | | SH-8 | 77-AC8 | DISPERSION
TUBE
DISPERSION | 11063 | 1 | 65 | 26 | 50 | 25 | 168 | | SH-10 | 77-AC10 | DISPERSION
TUBF | (9915) | 1 | 65 | 26 | 50 | 25 | 150 | | | • | | | | | • | | • | | | | | | | | PU | MP SCHEI | DULE | | | | |--------|-----------------------------|--------|-------|------|-----------|-------------|------------------|-------|-----------|---------| | | | | | | CIRCULATI | NG FLUID | | ELE | CTRICAL M | OTOR | | MARK | SYSTEM
AND/OR
SERVICE | TYPE | FLUID | FLOW | HEAD | TEMPERATURE | NOMINAL
POWER | PHASE | VOLT | MAX RPM | | | 02:::02 | | | GPM | FT | °F | HP | | | | | HWP-8 | PREHEAT | INLINE | ннw | 16 | 20 | 180 | 1/4 | 1 | 120 | 1750 | | HWP-10 | PREHEAT | INLINE | HHW | 12 | 15 | 180 | 1/4 | 1 | 120 | 1750 | | AIR | FILTE | R SCHEI | DULE | |-------|----------------|---------------------|----------| | | | | APD | | MARK | MERV
RATING | AIRFLOW | MID-LIFE | | | | CFM | IN WG | | PF-6 | 8 | SEE AHU
SCHEDULE | 0.627 | | PF-8 | 8 | SEE AHU
SCHEDULE | 0.654 | | PF-10 | 8 | SEE AHU
SCHEDULE | 0.632 | | AF-6A | 11 | SEE AHU
SCHEDULE | 0.715 | | AF-6B | 14 | SEE AHU
SCHEDULE | 0.847 | | AF-8A | 11 | SEE AHU
SCHEDULE | 0.737 | | AF-8B | 14 | SEE AHU
SCHEDULE | 0.774 | | AF-10 | 13 | SEE AHU
SCHEDULE | 0.828 | | _ | <u>FILTE</u> | <u>R SCHEI</u> | DULE | | | ROOF CURB | |---|----------------|---------------------|----------|-----|--------|--| | | | | APD | | | | | | MERV
RATING | AIRFLOW | MID-LIFE | MAF | .RK | DESCRIPTION | | | | CFM | IN WG | | | | | | 8 | SEE AHU
SCHEDULE | 0.627 | RC- | -8, 10 | 30" HIGH ROOF CURB WITH 1½" FACED INSULATION. FULLY-WELDED CONSTRUCTION WITH LOAD-DISTRIBUTING INTERNAL REINFORCEMENT. CURB SHALL BE CERTIFIED TO COMPLETELY SUPPORT | | | 8 | SEE AHU
SCHEDULE | 0.654 | | | WEIGHT OF AIR HANDLING UNIT AND INCLUDE ALL NECESSARY GASKETING, CLOSURE ANGLES, ETC. CURB SHALL BE CONSTRUCTED OF PRIMED AND PAINTED STEEL. | | | 8 | SEE AHU
SCHEDULE | 0.632 | | | | | | 1.1 | SEE AHU | 0.715 | | | | MARK SD-1 SD-2 SD-3 SUPPLY DIFFUSER MODULAR CORE DIFFUSER, STEEL, WHITE, OPPOSED MODULAR CORE DIFFUSER, STEEL, WHITE, OPPOSED BLADE DAMPER. PROVIDE WITH NECESSARY DUCT MODULAR CORE DIFFUSER, STEEL, WHITE, OPPOSED BLADE DAMPER. PROVIDE WITH NECESSARY DUCT TRANSITION. BLADE DAMPER. PROVIDE WITH NECESSARY DUCT DESCRIPTION TRANSITION. TRANSITION. NECK SIZE 10X10 | CVCTELL | | MINAL | CF | | MAX INLET | | |----------------|-------------------|-------------|-------------|-------------|--------------|------------| | SYSTEM | TAG | INLET (IIV) | MAX | MIN | SP (INWG) | GPM | | AC-6 | TU2-1 | 10 | 750 | 750 | 0.75 | 2.0 | | AC-6 | TU2-2 | 10 | 900 | 900 | 0.75 | 2.0 | | AC-6 | TU2-3 | 6 | 360 | 360 | 0.75 | 1.0 | | AC-6 | TU2-4* | 8 | 580 | 580 | 0.75 | 3.0 | | AC-6 | TU2-5 | NOT USED | <u> </u> | | г г | | | AC-6 | TU2-6 | 6 | 340 | 340 | 0.75 | 1.0 | | AC-6 | TU2-7 | 8 | 410 | 410 | 0.75 | 1.5 | | AC-6 | TU2-8 | 8 | 405 | 405 | 0.75 | 1.5 | | AC-6 | TU2-9 | 8 | 430 | 430 | 0.75 | 1.5 | | AC 6 | TU2-10* | 10 | 800 | 800 | 0.75 | 2.0 | | AC-6
AC-6 | TU2-11
TU2-12 | 12 | 460
1000 | 460
1000 | 0.75
0.75 | 1.5
3.0 | | AC-6 | TU2-12 | 10 | 620 | 620 | 0.75 | 2.0 | | AC-6 | TU2-13 | 8 | 550 | 550 | 0.75 | 1.5 | | AC-6 | TU2-15* | 10 | 800 | 800 | 0.75 | 2.0 | | AC-6 | TU2-16 | 8 | 490 | 490 | 0.75 | 1.5 | | AC - 6 | TU2-17 | 8 | 560 | 560 | 0.75 | 1.5 | | AC-6 | TU2-18 | 8 | 410 | 410 | 0.75 | 1.5 | | AC-6 | TU2-19 | 10 | 790 | 790 | 0.75 | 2.0 | | AC-6 | TU2-20 | 10 | 800 | 800 | 0.75 | 2.0 | | AC-6 | TU2-21* | 10 | 800 | 800 | 0.75 | 2.0 | | AC-6 | TU2-22 | 6 /2 | 280 | 280 | 0.75 | 1.0 | | AC-6 | TU2-23* | 12 | 1389 | 1389 | 0.75 | 3.0 | | AC-6 | TU2-24 | 8 | <u>614</u> | 614 | 0.75 | 1.5 | | AC-6 | TU2-25 | 8 | 480 | 480 | 0.75 | 1.5 | | AC-6 | TU2-26 | 10 | 705 | 705 | 0.75 | 2.0 | | AC-6 | TU2-27 | 8 | 560 | 560 | 0.75 | 1.5 | | AC-6 | IU2-28 | 8 | 480 | 480 | 0.75 | 1.6 | | AC-6 | TU2-29 | 8 | 410 | 410 | 0.75 | 1.5 | | AC-6 | TU2-30 | 8 | 430 | 430 | 0.75 | 1.5 | | AC-6 | TU2-31 | 6 | 150 | 150 | 0.75 | 1.0 | | AC-10 | TU3-1* | 16 | 1925 | 963 | 0.60 | 6.0 | | AC-10 | TU3-2 | 6 | 110 | 55 | 0.40 | 0.5 | | AC-10 | TU3-3* | 14 | 1575 | 788 | 0.60 | 6.0 | | AC 10 | TU3-4 | 10 | 775 | 388 | 0.50 | 2.0 | | AC 10 | TU3-5 | 10 | 570 | 285 | 0.40 | 2.0 | | AC-10
AC-10 | TU3-6
TU3-7A/B | | 295 | 295 | 0.40 | 1.0 | | AC-10
AC-10 | TU3-8 | 8 | 340 | 170 | 0.40 | 1.0 | | AC-10 | TU3-9* | 12 | 650 | 325 | 0.50 | 4.0 | | AC-10
AC-10 | TU3-10 | 12 | 685 | 343 | 0.50 | 4.0 | | AC-10 | TU3-11 | 12 | 675 | 338 | 0.50 | 4.0 | | AC-10 | TU3-12 | 12 | 770 | 385 | 0.50 | 4.0 | | AC-8 | TU3-13* | 12 | 910 | 455 | 0.50 | 4.0 | | AC-8 | TU3-14 | 6 | 95 | 95 | 0.40 | 0.5 | | AC-8 | TU3-15 | 8 | 240 | 240 | 0.40 | 1.0 | | AC-8 | TU3-16 | 12 | 905 | 905 | 0.40 | 2.0 | | AC-8 | TU3-17 | 6 | 160 | 80 | 0.40 | 0.5 | | AC-8 | TU3-18 | 8 | 285 | 285 | 0.40 | 1.0 | | AC-8 | TU3-19* | 14 | 1420 | 1420 | 0.60 | 6.0 | | AC-8 | TU3-20 | 10 | 565 | 283 | 0.40 | 2.0 | | AC-8 | TU3-21 | 16 | 1900 | 1900 | 0.75 | 6.0 | | AC-8 | TU3-22 | 8 | 500 | 250 | 0.40 | 1.0 | | AC-8 | TU3-23 | 8 | 210 | 210 | 0.40 | 1.0 | | AC-8 | TU3-24 | 12 | 895 | 895 | 0.40 | 2.0 | | AC-8 | TU3-25 | 10 | 355 | 355 | 0.50 | 2.0 | | AC-8 | TU3-26 | 10 | 300 | 300 | 0.50 | 2.0 | | AC-8 | TU3-27 | 10 | 455 | 455 | 0.50 | 2.0 | 1. EWT: 180° F, EAT: 55° F, REHEAT COIL SELECTED AT 50% OF MAX CFM, | · · · | | 100 | ٠, | | 55 | ', ' | , L , , L | | | | | \sim 1 | 5078 | O1 | 141/-/// | CI IVI | , | |-------|-----|------|----|-------|------|------------|-----------|-------|-------|-----|-------|----------|------|-----|----------|--------|-----| | MAX | WPD | : 5 | FT | FOR | VAV, | 10 | FT | FOR | CAV, | MA | < DIS | CHA | RGE | NC: | 27. | UNITS | 3 | | WITH | AST | ERIX | UT | ILIZE | 3-1 | VAY | CON | ITROL | . VAL | VES | AND | BYP | ASS, | ALL | OTH | IERS | ARE | | 2 - W | ΔY. | Approved : Director Approved: | | | IF THIS SI | |-------------------------------|----------------|--| | Approved : Associate Director | Drawing Title: | Project Title: | | | SCHEDULES | REPLACE AIR HANDL | | | SCHEDULES | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | | | | IF THIS SHEET DOES NO | OT MEASURE 42" X 30" | IT IS A F | |--|--|--|---------------------------------------|-----------| | | Project Title: REPLACE AIR HANDLER UNITS BUILDING 77 | | Date: | | | | | | 4/24/12
Project No.:
621-11-127 | | | | Drawn: | Building Number: | Drawing No. | | | | ВМА | 77 | 77-MH5 | | | | Checked:
PM | Location: JAMES H. QUILLEN VA MEDICAL CENTER | Dwg 11 Of 20 | Ve | | IS A REDUCED PRINT. SCALE ACCORDINGLY. | |--| | | | Department of Veterans Affairs | | DATE | REVISIONS | |---------|---------------| | 5/7/12 | REVISION 1 /1 | | 5/29/12 | REVISION 2 | | | | | | | | | | | | | | | Assessed - Deciset Fasiness | |--|---------------------------------| | PROFESSIONAL | Approved : Project Engineer | | REGISTION ON TOPING THE PROPERTY OF PROPER | Approved : Supervisory Engineer | | A CANICAL TERES | Approved : VP FMS |